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Muscle performance in a soft-bodied
terrestrial crawler: constitutive modelling

of strain-rate dependency

A. Luis Dorfmann1,*, William A. Woods Jr2 and Barry A. Trimmer3

1Department of Civil and Environmental Engineering, 2Department of Biology, and
3Department of Biology and the Biomimetic Devices Laboratory, Tufts University,

Medford, MA 02155, USA

Experimental data on the passive mechanical properties of the ventral interior lateral muscle
of the tobacco hornworm caterpillar, Manduca sexta, are reported. The stress–deformation
response of the Manduca muscle is shown to be nonlinear pseudo-elastic, capable of large
deformations and subject to stress softening during initial loading cycles. The muscle passive
mechanical properties also depend on multiple time-dependent processes. In particular, we
show new experimental data from cyclic loading tests of an unstimulated muscle with
constant maximum stretch and different, constant engineering strain rates. Then, on the
basis of these data a constitutive model is derived to reproduce the main characteristics of
this behaviour. In formulating the constitutive model, we consider the muscle as a complex
macromolecular structure with fibrous components at numerous size scales. The model uses a
phenomenological approach to account for different mechanisms by which passive force
changes during applied deformation and how the muscle properties recover after unloading.

Keywords: Manduca sexta; striated muscles; anisotropy; pseudo-elasticity
1. INTRODUCTION

Animals moving in natural environments must cope
with complex three-dimensional surroundings that
change over different time scales and are never identical
at all locations. The motor systems that have evolved to
adapt to such variability are diverse in overall structure
but remarkably similar at the level of tissues and
molecular mechanisms. All animals use neural com-
mands to direct the contractile state of muscles, which
are themselves composed of interacting proteins. Cross-
bridge cycling between actin and myosin is the funda-
mental building block of muscle contraction, but each
type of muscle is tuned to specific applications by other
molecular and mechanical processes. Hence, cardiac
muscle is distinguished from skeletal muscle by cross-
striations, unique ion channels and enzyme isoforms and
by its myogenic activity and force–length charac-
teristics. Similarly, there are significant differences
between striated and smooth muscles and between
adult insect muscles and those of the larval stages.

Most studies focus on the active properties of these
tissues; that is, their role as motors that are activated to
develop tension or shortened to performwork. However,
there is a growing appreciation of the importance of the
passive properties of muscles together with their roles
as struts, beams, brakes and dampers. Unlike either
amorphous or crystallinematerials,muscles are complex
orrespondence (luis.dorfmann@tufts.edu).
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composites with profound anisotropy. Eachmuscle fibre
contains aligned actin and myosin filaments within an
amorphous matrix material composed of proteins, lipids
and polysaccharides. In addition, muscles are now
known to contain molecularly massive elastic proteins
such as titin (Ziegler 1994; Tskhovrebova et al. 1997;
Tskhovrebova & Trinick 2002, 2003; Granzier & Labeit
2004), with folded domains that result in asymmetric,
time-dependent stretching and shortening during load
cycling. The contribution of these material responses to
muscle function and animal behaviour is not well
understood. This is partly because most commonly
studied muscles function in combination with tissues
(tendons, ligaments, bones and joints; Marsh 1999;
Biewener 2003) that have very different material
properties. In these cases, characterization of the
material properties of isolated muscles is insufficient to
describe in vivo function. In addition, it is difficult to
interpret the responses ofmany skeletalmuscles that are
composed of both fast and slow cell types with differing
physiological and biochemical properties.

In response to this limitation, the approach taken in
the current work is to characterize and model the
properties of muscles in a soft-bodied animal, the
caterpillarManduca sexta. In contrast tomost vertebrate
muscles, or even those of most adult arthropods,
Manduca muscles do not act upon large attachment
structures or jointed skeletons. Instead, they must
function much like tongues, trunks and vertebrate hearts
(Kier & Smith 1985). The muscles are attached to the
J. R. Soc. Interface (2008) 5, 349–362
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bodywall such thatmuscle activity has a direct action on
overt movements (Belanger & Trimmer 2000; Mezoff
et al. 2004; Dorfmann et al. 2007; Trimmer & Issberner
2007). Furthermore, because Manduca changes shape,
the muscles undergo very large deformations (Woods
et al. 2007) and their passive properties are expected to be
particularly important. Structurally and biochemically,
larvalManducamuscle cells appear to be of one type and
there is no differentiation into fast and slow fibres.

In a previous work (Dorfmann et al. 2007), the force-
extension characteristics of Manduca muscles were
measured under constant rate loading and unloading,
both in a passive state and during tetanic stimulation.
Manduca muscles were found to be elastomeric in both
states, dissipating work with each strain cycle (pseudo-
elasticity) and undergoing stress softening on repeated
cycling (the Mullins effect). These properties have been
described in detail for natural rubber reinforced with
carbon black filler particles (Dorfmann & Ogden 2004),
and they can be modelled using constitutive equations
based on nonlinear continuum mechanics principles
(Fung 1993). This approach contrasts with the more
common mathematical descriptions of muscle that rely
on mechanical theories developed for small deformations
occurring in relatively rigid materials. In their simplest
form, these models are variations of Voigt and Maxwell
dampened spring systems or more sophisticated versions
that incorporate viscoelasticity (Speich et al. 2006).
Other models are based on known and postulated
biochemical (Holmes & Geeves 2000; Huxley 2000) or
structural processes with different time and strain
dependencies (Campbell & Lakie 1998). The advantage
in developing constitutive equations based on nonlinear
solid mechanics theories is that they capture the
characteristics of a material without restrictive assump-
tions on its behaviour and treat muscle as an anisotropic
three-dimensional body capable of large deformations. It
is therefore possible to model muscle during biologically
realistic elongations and forces.

An outstanding issue in passive muscle properties is
the mechanism by which passive force changes during
applied strain and how it recovers after unloading
(Proske & Morgan 1999; Mutungi & Ranatunga 2000).
This behaviour includes the thixotropic short-range
elastic component (Hill 1968) of frog’s striated and
smooth muscles. Both actin–myosin cross-bridge break-
age and reformation, and the unfolding of gap-filament
proteins (e.g. titin) have been proposed as probable
mechanisms (Granzier & Wang 1993a,b; Campbell &
Lakie 1998; Bagni et al. 2004; Granzier & Labeit 2004).
Intramuscular collagenous structural elements (Gosline
et al. 2002) andmuscle junctions (Lieber et al. 2000)may
also contribute to the properties observed in experi-
mental muscle preparations. Complicating the matter
still further is the possible variation in the relative
contribution of different structural elements in different
locomotory muscles, even in the same species (Prado
et al. 2005). These different molecular mechanisms are
important because they influence the assumptions and
validity of most mechanical models used to describe
muscle behaviour. In contrast, the constitutive
approach described here describes changes in the
effective contour length of fibrous molecules but makes
J. R. Soc. Interface (2008)
no assumptions about the mechanism underlying this
process (see §4.1). One extremely important aspect of
muscle function is that its performance often depends on
multiple time-dependent processes. It is difficult to
incorporate these changes accurately using classical
mechanical models but is theoretically attainable using
constitutive approaches. In the work described in the
current paper, we have taken the first step towards this
goal by measuring and modelling the responses of
passivemuscle to constant rate deformations at differing
strain rates. We show that, in addition to strain-
dependent stress softening, the responses of Manduca
muscle depend on the rate of loading and unloading. In
preconditioned muscles, higher strain cycling rates
result in higher stiffness and increased nonlinearity of
thework loops. A constitutivemodel ofManducamuscle
is described, which accurately reproduces the hysteresis
and rate dependency of these muscles. This model is
expected to be useful in the construction of numerical
simulations of soft-bodied locomotion.
2. MECHANICAL BEHAVIOUR OF MANDUCA
MUSCLE

2.1. Experimental methods

In the absence of a stiff skeleton,Manduca larval muscles
are attached directly to apodemes, infoldings of the
cuticle wall. The muscles are organized in repeated
segments corresponding to the body segments, in layers.
Test data were gathered for the ventral interior lateral
(VIL) muscle of the third abdominal segment (A3).
A3 VIL is one of the largest larval muscles, comprising
14 fibres (Dorfmann et al. 2007), the most interior of the
layer of muscles spanning the proximal terminus of
the first pair of prolegs. A3 VIL was chosen because its
rate-independent pseudo-elastic properties have been
characterized and modelled, both with and without
stimulation (Dorfmann et al. 2007), and because during
crawling VIL reaches its highest stress during the
lengthening portion of its strain cycle (Woods et al.
in press), suggesting that its passive properties play an
important role in its biological function.

Experimental methods have been previously
reported in detail by Dorfmann et al. (2007). Briefly,
muscle length was determined prior to the dissection of
a cold-anaesthetized larva in the second day of its fifth
instar using previously established external markers of
muscle attachment points. The muscle was dissected
out in physiological saline (Trimmer & Weeks 1989)
along with a small portion of attached cuticle at each
end. The preparation was transferred to a horizontal
saline bath, with one end pinned to an elastomer
platform in the bath and the other secured by a hook
to an Aurora 300B-LR lever arm ergometer that
administered strain cycling while measuring force
(Aurora Scientific, Inc., Aurora, Ontario). The depar-
tures in the current experimental procedure from
methods described by Dorfmann et al. (2007) are that
(i) values of engineering strain rates _3Z0.0144, 0.072,
0.36 and 1.8 sK1 are imposed and (ii) all measurements
are of unstimulated muscle.

http://rsif.royalsocietypublishing.org/
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Figure 1. Cyclic tension tests of a passive caterpillar muscle with a maximum stretch of lmaxZ1.18 and engineering strain rates of
(a ) _3Z0:0144 sK1, (b) _3Z0:072 sK1, (c) _3Z0:36 sK1 and (d ) _3Z1:8 sK1.
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A3 VIL is capable of large nonlinear elastic
deformations and shows both hysteresis and stress
softening during repeated strain cycling in both the
passive and active conditions (Dorfmann et al. 2007).
For active muscle, part of the stress softening is due to
the time course of the contractile force developed by the
muscle during stimulation. Owing to the diminishing of
contractile force over time, data for stimulated muscle
at lower strain rates, which would require very lengthy
stimulation, are not biologically representative or
experimentally feasible.

During horizontal crawling, A3 VIL experiences
strain rates between _3Z0.2 and 0.3 sK1. During
exploratory movements, however, strain rates can be
far lower, while during defensive strike behaviour
(Walters et al. 2001) strain rates can be far higher,
with _3O2 in some instances (Michael Simon 2007,
unpublished data).
2.2. Rate-dependent stress–deformation
response

Toassess the effect of rate dependence on themechanical
response of an unstimulated A3 VIL muscle, several
series of periodic loading–unloading uniaxial extension
tests were carried out at a constant temperature of 258C.

The periodic loading, unloading and reloading
tests were performed using constant strain rates
J. R. Soc. Interface (2008)
representative of those encountered in nature. The initial
distance of the pinned connections at each end of the
musclewasused todetermine the longitudinal strain.The
reference length of the muscle was found to be 5.5 mm.
Changes in the distance between these connections were
measuredwith an accuracy of 1 mm.The tensile force was
measured with an accuracy of less than 0.3 mN. The
nominal stress was determined as the ratio of the axial
force to the cross-sectional area, measured in the
reference configuration. For a detailed description of the
microscopic analysis to determine the cross-sectional
area,we refer toDorfmann et al. (2007).Themagnitudeof
the cross-sectional area of the muscle tested and used to
determine the nominal stress was 0.4 mm2.

During each of the tests, the muscle was subjected to
five cycles of preconditioning, with constant strain rate
_3 up to a pre-selected extension with stretch lZ1.18.
The preconditioning was performed in order to monitor
the progression of stress softening and to determine the
ultimate stress–deformation response for stretches up
to lZ1.18. Figure 1 shows the nominal stress versus
stretch l for the muscle in unstimulated state, with
engineering strain rates of _3Z0.0144, 0.072, 0.036 and
1.8 sK1. Figure 2 compares the response of the muscle
during the fifth loading–unloading cycle for the
different loading rates. The following observations
are made.

http://rsif.royalsocietypublishing.org/
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Figure 2. Comparison of the rate-dependent responses of a
preconditioned Manduca muscle. Engineering strain rates are
_3Z0.0144, 0.072, 0.36 and 1.8 sK1.
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—The initial configuration, corresponding to the
natural configuration of the muscle in the animal,
is not stress free. We take the corresponding
geometric configuration to be the reference configu-
ration from which to measure any subsequent
extension generated by the application of mechan-
ical loads.

—The stresses corresponding to the same strain level
increase with the loading rate during loading and
unloading.

—There are large differences in the stresses corre-
sponding to the same strain level under loading and
unloading during the first cycle in periodic tests with
a fixed strain amplitude. The differences increase
with the loading rate.

—There is a reduction in the stress at a given strain
on each successive loading. The reduction is largest
on the first and second loading–unloading cycles
and becomes rather small after approximately five
cycles. Again, the reduction in the stress increases
with the loading rate.

—After five preconditioning loading–unloading cycles,
the stress–stretch responses are essentially repea-
table and additional stress softening is negligible.

—Energy lost during cyclic loading is often presented
as an efficiency value or work loop efficiency. Using
data from the fifth loading–unloading cycle to
evaluate the work loop efficiency, no dependence
on the loading rate is observed. The efficiency values
for cyclic loading with engineering strain rates of
_3Z0.0144, 0.072, 0.36 and 1.8 sK1 are 0.0025, 0.0029,
0.0027 and 0.0027 Nmm, respectively.

We note that the degree of stress softening and the
ultimate stress–deformation responses are dependent
on time and electrical stimulus (Dorfmann et al. 2007).
However, in this study we are not concerned with
phenomena such as muscle stimulation, recovery time
and viscous effects.
J. R. Soc. Interface (2008)
3. CONSTITUTIVE MODELLING

The mechanical behaviour of hard tissues, such as bones
and teeth, can be described using infinitesimal defor-
mation theories. Under this condition, no distinction is
madebetween the current deformed configurationand the
undeformed natural reference state. In contrast, soft
tissue can sustain finite deformations and therefore non-
linear theories must be used to describe the structural
response. Existing finite deformation models may be
distinguished based on a micromechanical or phenomen-
ological approach. Micromechanical models (Cowin
(2004) used the term mechanistic models) are less
developed, rely on biological mechanisms, provide insight
into chemical processes and interaction and may also
describe the rearrangements of the microstructure.
Phenomenological models, on the other hand, provide a
descriptive and predictive capability for the mechanical
response of soft tissue. They are based on a continuum
mechanics approach and, in the simplest situation, are
capable of simulating the nonlinear elastic behaviour of
isotropic materials. The theory has been extended to
incorporate more complicated effects such as pseudo-
elasticity, anisotropy and rate-dependent stress–strain
responses. We will first provide an overview of the basic
equations of the finite deformation theory and then
develop a constitutive phenomenological model for
the rate-dependent stress–strain behaviour of the Man-
ducamuscle.
3.1. Basic equations

Consider a body B as a set of points referred to as
particles (or material points), which have a one-to-one
correspondence with points of a region B in a three-
dimensional Euclidean point space. We denote such a
region as a configuration of the body. In the reference
configuration, the body B occupies the region Br and a
generic point of B is identified by the position vector X
relative to an arbitrary chosen reference configuration.
For biological tissue, in general, the reference configu-
ration Br will not be stress free as a result of non-uniform
tissue growth that has taken place up to this time, i.e.
there are residual stresses in Br. These residual stresses
have an influence on the overall mechanical and
biological interactions as widely reported during the
past two decades. We take the fixed geometric configu-
ration Br to be the reference configuration from which to
measure any subsequent deformations generated by the
application of mechanical loads. Suppose the application
of mechanical loads deform the body so that the pointX
occupies the new position xZc(X ) in the time-
independent deformed configuration, which we denote
by B. The vector field c, which is a one-to-one,
orientation-preserving mapping with suitable regularity
properties, describes the deformation of the body.

The deformation gradient tensor F relative to Br and
its determinant are

FZGrad c; J Z det FO0; ð3:1Þ
where Grad denotes the gradient operator with respect
to X and wherein the notation J is defined. The
Cartesian components of F are given by FiaZvxi=vXa,

http://rsif.royalsocietypublishing.org/
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where xi and Xa are the Cartesian components of x and
X and i, aZ1, 2, 3. Denoting dV and dv as volume
elements in Br and B, respectively, we have the relation

dv Z JdV ; ð3:2Þ
and for a volume-preserving (isochoric) deformation,
JZdet FZ1.

The unique polar decompositions of the deformation
gradient F are

FZRUZVR; ð3:3Þ
where R is a proper orthogonal tensor and U and V are
the positive definite and symmetric, respectively, the
right and left stretch tensors. It follows that
det FZdet UZdet V. The tensors U and V have the
spectral forms

UZ
X3
iZ1

liu
ðiÞ5uðiÞ; VZ

X3
iZ1

liv
ðiÞ5vðiÞ; ð3:4Þ

where liO0, iZ1, 2, 3 are the principal stretches; the
unit vectors u(i ) and v(i ) indicate the principal
directions in the reference and current configurations,
respectively; and 5 denotes the tensor product. For
incompressible materials,

J Z det FZ l1l2l3 h1: ð3:5Þ
Using the polar decompositions (3.3), we may define the
following measures of deformations:

CZFTFZU2; BZFFT ZV2; ð3:6Þ
which are, respectively, the right and left Cauchy–
Green deformation tensors. The three principal invar-
iants of C, equivalently B, are defined by

I1 Z trC; I2 Z
1

2
ðtrCÞ2KtrðC2Þ
� �

; I3 ZdetCZJ 2;

ð3:7Þ
where tr is the trace of a second-order tensor.

The motion c, with FZGrad c, deforms an infini-
tesimal material line element dX atX into a spatial line
element dx (which consists of the same material as dX )
at x. Using equations (3.3), we have

dx ZF dX ZRðU dXÞZVðR dXÞ: ð3:8Þ
For a detailed discussion on the kinematics of

continua, we refer to, for example, Ogden (1997) and
Holzapfel (2001).
3.2. Isotropic hyperelasticity

A hyperelastic material is defined as an elastic material
whose nominal stress S is given by

SZ
vW

vF
; ð3:9Þ

where the scalar functionW(F), called the strain energy
function (or stored energy function), is a function of F
only. The strain energy function represents the work
done per unit volume atX in changing the deformation
gradient from I to F. The Cauchy (or true) stress tensor
s has the from

sZ JK1FSZ JK1F
vW

vF
: ð3:10Þ
J. R. Soc. Interface (2008)
The elastic stored energy is a scalar-valued function
and therefore indifferent to a superposed rigid body
rotation after deformation, i.e. it is required to be
objective. Therefore, for all rotations Q and each
deformation gradient F, we have

W ðQFÞZW ðFÞ: ð3:11Þ
Using the polar decomposition (3.3) and the choice
QZRT in (3.11) gives

W ðFÞZW ðUÞZW ðCÞ: ð3:12Þ
Thus, W depends on F only through the stretch tensor
U or equivalently through the Cauchy–Green defor-
mation tensor C, where we recall that CZU2.

We now restrict attention to isotropic materials, for
which the mechanical response is, by definition,
unaffected by a rigid body rotation in the reference
configuration prior to loading. Then, for all rotations Q
we have the condition

W ðFQÞZW ðFÞ: ð3:13Þ
Bearing in mind that the Q’s appearing in (3.11) and
(3.13) are independent, the combination of these two
equations yields

W ðQUQTÞZW ðUÞ; ð3:14Þ
for all rotations Q. Equation (3.14) states that W is an
isotropic function of U. It follows from the spectral
decomposition (3.4) thatW depends on U only through
the principal stretches l1, l2, l3. Equivalently, we may
regard W as a function of the principal invariants of C

W ðCÞZW ðI1; I2; I3Þ: ð3:15Þ

3.3. Incompressibility

Incompressible (constrained) material behaviour is a
convenient idealization and is used frequently in
practical applications of biological materials. As a
matter of fact, many biological tissues do not change
their volume for deformations within the physiological
range. The incompressibility constraint is given by
equation (3.5), equivalently I3h1. The expressions
(3.9) and (3.10) for the nominal stress S and Cauchy
stress s are modified and are now given, respectively, by

SZ
vW

vF
KpFK1; sZF

vW

vF
KpI; ð3:16Þ

where p is a Lagrange multiplier associated with the
incompressibility constraint (3.5) and represents an
arbitrary hydrostatic pressure. Equation (3.16) states
that the stress in an incompressible material is
determined by F only within an arbitrary hydrostatic
pressure. The dependence of the strain energy function
W on I3 can be removed, hence we write WZW(I1, I2).
3.4. Transversely isotropic materials

A transversely isotropic material is composed of an
elastic matrix and an embedded family of fibres,
attributing the composite strong directional properties.
In general, the stiffness is much higher along the fibre
direction (preferred direction) comparedwith directions
orthogonal to the fibres. The preferred direction in the

http://rsif.royalsocietypublishing.org/
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reference configuration Br is given by the unit vectorM
and we note that the material response is unaffected
by an arbitrary rotation around M and by replacing M
by KM. For transversely isotropic materials, the stress
at a material point X depends in addition to the
deformation gradient F on the fibre directionM.

The material considered here is said to be transver-
sely isotropic if the strain energy function W is an
isotropic function of the two tensors F and M5M.
Following the work by Spencer (1972, 1984) and Ogden
(2001), the form of W is reduced to dependence on the
principal invariants I1, I2, I3 of the right Cauchy–Green
deformation tensor C as defined by equation (3.7) and
the additional invariants I4 and I5 given by

I4 ZM$ðCM Þ; I5 ZM$ðC2M Þ: ð3:17Þ
Note that the invariant I4 represents the square of the
stretch in the fibre direction M. This implies that the
strain energy for an unconstrained transversely iso-
tropic material may be written as

W ZW ðI1; I2; I3; I4; I5Þ; ð3:18Þ
and for an incompressible material subject to the
constraint (3.5), equivalently I3h1, W is regarded as
a function of the remaining four invariants
(I1, I2, I4, I5).
3.5. Constitutive equations

Restricting attention to incompressible materials with
I3h1, the strain energy of a transversely isotropicmaterial
is a function of the four invariants (I1, I2, I4, I5). The
response of the constrained transversely isotropic
material, with fibre direction M in the reference configu-
rationBr, is given by the nominal stressS and the Cauchy
stress s shown in equation (3.16). To write the explicit
forms of S and s, we need formulae for the derivatives of
the invariants with respect to the deformation gradient F.
These are

vI1
vF

Z 2FT;
vI2
vF

Z 2ðI1FTKFTFFTÞ; ð3:19Þ
vI4
vF

Z 2M5FM ;

vI5
vF

Z 2ðM5FCM CCM5FM Þ:
ð3:20Þ

A direct calculation then leads to

SZ 2ðW1 CI1W2ÞFTK2W2CF
T C2W4M

5FM C2W5ðM5FCM CCM5FM ÞKpFK1;

ð3:21Þ
sZ 2ðW1 CI1W2ÞBK2W2B

2 C2W4FM

5FM C2W5ðFM5BFM CBFM5FM ÞKpI;

ð3:22Þ
where WiZvW=vIi, iZ1, 2, 4, 5. When the dependence
on I4 and I5 in equations (3.21) and (3.22) is omitted,
the associated expressions for an isotropic material
are obtained.

For fibre-reinforced materials, it is common to write
the strain energy function as the sum of two terms, one
associated with the isotropic properties of the base
J. R. Soc. Interface (2008)
matrix and the other to introduce transverse isotropy in
the mechanical response. We follow this tradition and
consider a strain energy function given by

W ZWisoðI1; I2ÞCWfibðI4; I5Þ; ð3:23Þ

where the term Wiso represents the isotropic matrix
material andWfib accounts for the directional reinforce-
ment, the latter also known as the reinforcing model
(Qiu & Pence 1997; Merodio & Ogden 2003).
3.6. Pseudo-elasticity

The notation of pseudo-elasticity has been introduced
by Fung (1980) to describe the hysteretic response of
biological tissues during cyclic loading, i.e. the loading–
unloading responses do not coincide, even though the
body may return to its original state. Pseudo-elasticity
describes an elastic material during loading and a
different elastic material during unloading. A theory
describing the mechanical response of these materials
has been developed by Ogden & Roxburgh (1999) and
used by Dorfmann & Ogden (2003, 2004) to account for
stress softening and residual strains in carbon black-
reinforced elastomers.

Following Dorfmann et al. (2007), we use the term
pseudo-elasticity to describe the hysteretic response of a
preconditioned Manduca muscle during a loading–
unloading cycle (see experimental data in §2.2). The
theory, developed by Ogden & Roxburgh (1999),
modifies the elastic strain energy function W(F) by
incorporating an additional variable h. Thus, we write

W ZW ðF; hÞ: ð3:24Þ

The inclusion of h provides a means of continuously
changing the form of the strain energy function and as a
consequence the stress–strain response during the
deformation process. In general, the response of the
material is then no longer elastic andW(F, h) is referred
to as a pseudo-energy function. In this section we
provide an overview of the main ingredients of the
general theory of pseudo-elasticity and appropriate
specifications will be made in §4.2.

The internal variable h may be inactive or active;
activating h introduces a change in the material
properties. A change from inactive to active may be
induced, for example, when unloading is initiated.

If the variable h is inactive, we set it to the constant
value unity and write

W0ðFÞZW ðF; 1Þ; ð3:25Þ

for the resulting strain energy function. In (3.25) and in
what follows the subscript ‘0’ is associated with the
situation in which the variable h is inactive. For an
incompressible material, the nominal stress associated
with an inactive h, denoted S0, is given by

S0 Z
vW0

vF
ðFÞK p0F

K1; det FZ 1: ð3:26Þ

If h is active, we take it to depend on the deformation
through the gradient F. The nominal stress is then
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given by

SZ
vW

vF
ðF; hÞC vW

vh
ðF; hÞ vh

vF
ðFÞKpFK1;

det FZ 1:

ð3:27Þ

Following Ogden & Roxburgh (1999), we take h to be
given implicitly by the constraint

vW

vh
ðF; hÞZ 0; ð3:28Þ

which uniquely defines h in terms of F. We may write
the solution to equation (3.28) formally as

hZ heðFÞ: ð3:29Þ
Then, the expression of the nominal stress (3.27)
simplifies to

SZ
vW

vF
ðF; hÞKpFK1; det FZ 1; ð3:30Þ

whether or not h is active, where when h is active the
right-hand side is evaluated for h given by (3.29). It is
convenient to introduce the notation w for the resulting
(unique) strain energy function. Thus,

wðFÞhW ðF; heðFÞÞ; ð3:31Þ
and the nominal and Cauchy stress tensors for
incompressible materials are given by the standard
relations

SZ
vw

vF
ðFÞKpFK1; sZF

vw

vF
ðFÞKpI: ð3:32Þ

This general framework allows for substantial flexi-
bility with regard to the dependence of W on h and on
the form of the function he(F) in (3.29).
4. A MODEL FOR THE MANDUCA MUSCLE

In this section we develop the constitutive model to
describe the nonlinear mechanical response of a
preconditioned Manduca muscle in the passive state.
The muscle consists of a microfibrillar matrix material
with an embedded fibrous network of elastic proteins,
and the proposed model accounts for its nonlinear
mechanical properties, including finite deformation
pseudo-elasticity, anisotropy, energy dissipation associ-
ated with hysteresis and rate-dependent stress–strain
response. We further assume incompressibility, since
changes in volume for deformations within the physio-
logical range are small and therefore negligible. The
model is fitted to available data and its predictions
are assessed.

It should be emphasized that in the natural
configuration the muscle is not stress free and if
released from the body wall its length will shorten. In
this paper, for simplicity, our model does not account
for the residual stresses in the natural configuration.
We assume instead that our reference state, from which
the deformation is measured, coincides with the
geometric configuration of the preconditioned muscle
in the passive state where no residual stresses remain
(see experimental data in §2).

For an elastic, incompressible and transversely
isotropic material, the total strain energy W,
J. R. Soc. Interface (2008)
corresponding to equation (3.23), derives contributions
from the isotropic microfibrillar matrix and the fibrous
network. For the particular application here considered
and in order to reduce the number of material
parameters, it is convenient to eliminate the depen-
dence of W on the invariants I2 and I5. We consider a
reduced form of equation (3.23) given by

W ðI1; I4ÞZWisoðI1ÞCWfibðI4Þ; ð4:1Þ
which still provides sufficient flexibility to capture the
experimentally observed response of theManducamuscle.
4.1. Fibrous network behaviour

Muscles are complex macromolecular structures with
fibrous components at numerous size scales. Thick and
thin filaments composed mainly of myosin and actin,
respectively, form the primary fibrous components. In
striated muscles, these are arranged in more or less
parallel alternating strands oriented along the primary
axis of the muscle fibres, with each thick filament
surrounded by six to eight thin filaments. They are
linked to one another by reversible cross-bridges (which
drive the passive-to-active state transition) and
attached to the complex proteinaceous Z-line (or disc)
that spans the short axis of each muscle fibre. In
vertebrates, and most adult insect skeletal muscles,
these Z-lines are aligned into contractile elements called
sarcomeres and bundles of muscle fibres are also aligned
to give the striated appearance. During activation, the
actin and myosin filaments slide past one another and
the Z-lines constitute an ultimate barrier limiting the
maximum effective shortening. Massive elastic proteins
of the titin family connect the thick filaments to the
Z-line and are proposed to contribute significantly to the
passive properties of resting muscle. Titin varies in size
depending on themuscle type and appears to be folded to
different degrees at slack sarcomere length.For example,
vertebrate cardiac muscle expresses the shortest titin
isoform and it is packed between the thick filament and
the Z-line, where it acts as a bidirectional spring
(Granzier & Labeit 2004). In contrast, much longer
titin isoformswith repeating domains are found in soleus
muscle and titin is thought to straighten and then unfold
as the muscle is stretched, thereby providing strain- and
rate-dependent spring-like behaviour (Tskhovrebova
et al. 1997; Tskhovrebova & Trinick 2003). Force-
extension experiments on single molecules generate a
sawtooth-like pattern of equally spaced peaks. Every
downstroke of the response reflects the mechanically
induced unfolding of a domain, the weakest unfolds first
and the strongest domain last (Rief et al. 1997; Bullard
et al. 2006).

Although larval Manduca muscles are striated, they
also have features that are reminiscent of tonic or
smooth muscles. The Z-lines are indistinct and poorly
aligned and each thick filament is surrounded by 10–12
thin filaments (Rheuben & Kammer 1980). It is not
known if invertebrate titin-like molecules such as kettin
are expressed by Manduca muscles; however, they are
certainly present in Lepidoptera (Suzuki et al. 1999)
and other insects groups and appear important for
musclepassiveproperties (Kulke et al. 2001).Our current
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results do not distinguish between the differentmolecular
mechanisms of strain-rate dependency, but it is interest-
ing to consider some of the possibilities. Test data have
shown that the unfolding of coiled domains affects the
macroscopic stress–strain response (Qi et al. 2006;
Bertoldi & Boyce in press). Our test data are consistent
with such unfolding of domains during the initial loading,
and with partial refolding when the muscle returns to the
reference configuration upon unloading. Furthermore,
the mechanical contributions of these different domains
are expected to be highly strain rate dependent, perhaps
contributing to the changes in stiffness observed in
Manduca muscle. Although we have not systematically
studied recovery time, it appears that muscles return to
anunconditioned statewithin severalminutes of repeated
strain cycles. It will be interesting to compare such
recovery with that of titin, in which the refolding of a
single domain occurs within seconds (Carrion-Vazquez
et al. 1999).

We do not attempt to formulate a theory based on
the worm-like chain (WLC) model to capture the
distinct fall-offs in load associated with the unfolding of
individual domains. The WLC model, originally intro-
duced by Kratky & Porod (1949), is described in detail
in the appendix G of Flory (1988). Since the molecular
architecture of the Manduca muscle is not sufficiently
known, we prefer a phenomenological approach to
describe the effect of unfolding and the associated
increase in the contour length of the macromolecular
chain. This is accomplished by introducing the material
parameter c0 with the dimensions of stress, which
serves as a measure of the passive strength of the
oriented proteins in the molecular structure of the
muscle. Unfolding of individual domains increases
the contour length of the macromolecular chain and
makes the response less stiff (more compliant). We
propose to use the square of the macroscopic stretch
I4 in the fibre direction as a representative measure of
domain unfolding, such that

c0ðI4ÞZ �c0 1Ka1 tanh
I4K1

a2

� �� �
; ð4:2Þ

where �c0 is a stress-like material parameter. An
appropriate choice of the dimensionless parameters a1
and a2 enables one to describe the increase in
compliance observed during unfolding.
4.2. Hysteretic response

The constitutive model of theManducamuscle must be
able to describe the experimentally observed hysteretic
response and the associated energy dissipation during
loading–unloading cycles. Following the development
by Dorfmann et al. (2007), we again use the general
theory of pseudo-elasticity outlined in §3.6 and select a
specific form of the pseudo-energy function (3.24). For
the Manduca muscle, considering an incompressible
and transversely isotropic material, we propose a
pseudo-energy function given by

W ðI1; I4; hÞZ hW0ðI1; I4ÞCfðhÞ; ð4:3Þ
J. R. Soc. Interface (2008)
where the subscript ‘0’ refers to the loading paths on
which the variable h is inactive and equal to unity. The
function f, which depends only on h, accounts for the
energy dissipation during a loading–unloading cycle
and for consistency with equation (3.25), it must satisfy
the condition f(1)Z0. Equation (3.28) then gives the
important relation

f0ðhÞZKW0ðI1; I4Þ; ð4:4Þ
which for a specific strain energy formulation, W0

determines h implicitly in terms of the invariants I1 and
I4. Unloading, which may be initiated from any point on
the loading path, is taken as a signal to activate h. We
emphasize that the magnitude of h derived from
equation (4.4) depends on the maximum values of I1
and I4 attained on the loading path, which we denote
I1m and I4m . Since hZ1 at any point on the loading path
from which unloading is initiated, it follows from
equation (4.4) that

f0ð1ÞZKW0ðI1m ; I4mÞhKWm; ð4:5Þ

wherein the notation Wm is defined. This is the current
maximum value of the energy achieved on the loading
path. In accordance with the properties of W0, Wm

increases along a loading path. In view of (4.5), the
function f depends on the point from which unloading
begins through the energy expended on the loading
path up to that point.

When the material is fully unloaded and in the
reference configuration, with I1Z3 and I4Z1, the
magnitude of the variable h is a minimum. This is
determined by inserting these values into equation (4.4)
to give

f0ðhminÞZKW0ð3; 1ÞZ 0; ð4:6Þ

where we assume that no elastic energy is stored in the
reference configuration. The residual (non-recoverable)
energy f(hmin) is given by (4.3) and has the value

W ð3; 1; hminÞZfðhminÞ: ð4:7Þ

This may be interpreted as a measure of the energy
dissipated in the muscle during the loading–unloading
cycle and represents the area between the loading and
the unloading curves. It is therefore appropriate to
denotef asa dissipation function. FollowingDorfmann&
Ogden (2003), we select the derivative of the dissipation
function f to have the form

Kf0ðhÞZm tanhK1½rðhK1Þ�CWm; ð4:8Þ
where r and m/m are dimensionless positive material
parameters, m being the shear modulus of the matrix
material. The explicit form of h is obtained from
equations (4.8) and (4.4) and has the form

hZ 1K
1

r
tanh

WmKW0ðI1; I4Þ
m

� �
: ð4:9Þ

The variable h assumes the minimum value hmin when
I1Z3 and I4Z1, which corresponds to the reference
configuration of the muscle. It is given by

hmin Z 1K
1

r
tanh

Wm

m

� �
: ð4:10Þ
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Finally, integration of equation (4.8) gives the energy
dissipation explicitly in terms of the variableh in the form

fðhÞZKmðhK1ÞtanhK1½rðhK1Þ�

KWmðhK1ÞK m

2r
log½1Kr2ðhK1Þ2�: ð4:11Þ

4.3. Rate-dependent response

Experimental data of the rate-dependent behaviour of
the Manduca muscle have been shown in §2. To model
the rate-dependent loading and unloading responses,
we propose a modified pseudo-elastic strain energy
formulation that, in the absence of strain-rate effects,
reduces to the formulation (4.3).

We propose that the pseudo-elastic energy function
for an incompressible and transversely isotropic
material has the form WZW ðI1; I4; h; _g0Þ. Following
Sweeney & Ward (1995) and Selvadurai & Yu (2006),
the variable _g0 is an effective strain rate defined by

_g0 Z
dg0

dt
where

g0 Z ð�l1K1Þb Cð�l2K1Þb Cð�l3K1Þb
� �1=b

;

ð4:12Þ

where the exponent b is a material parameter. The
modified stretches �li; i2f1; 2; 3g satisfy the conditions

�li Z
li for liR1; i2f1; 2; 3g
1 for li!1; i2f1; 2; 3g

:

(
ð4:13Þ

This implies that the strain-rate effect is activated only
when the material is subjected to extension liR1. For
uniaxial extension in the one-direction, for example, we
have l2Zl3!1 and the effective strain becomes
g0Zl1K1, i.e. it reduces to uniaxial strain.

Let the rate-dependent material response be associ-
ated with domain unfolding and refolding as described
in §4.1. This implies that only the reinforcing termWfib

in (4.1) depends on the loading rate (see also Bertoldi &
Boyce in press). We propose to replace the parameter
a1 in equation (4.2) and the parameter r in equation
(4.9) by

a0
1 ZaCadð _g0Þ; r 0 Z rCrdð _g0Þ; ð4:14Þ

to affect, respectively, the rate of unfolding and
refolding of domains during loading and subsequent
unloading. The superscript on a0

1 and r0 indicates
dependence on the loading rate.
4.4. A specific model

The theory of pseudo-elasticity is very general and
allows for substantial flexibility in the selection of W0

in equation (4.1). In this section we describe a specific
form of the constitutive formulation to model the
cyclic response of a preconditioned Manduca muscle.
In particular, we propose the formulation

W0ðI1; I4ÞZ
m

2
ðI1K3ÞC c0

2
fexp½c1ðI4K1Þ2�K1g;

ð4:15Þ
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where the neo-Hookean model is used to determine the
isotropic response of the microfibrillar base matrix and
m(greater than 0) is the associated shear modulus. The
embedded fibrous network, which in the case of the
Manduca muscle includes actin, myosin and other
proteins, provides a strong stiffening effect during
axial extension. This motivates the use of the
exponential function in equation (4.15) with c0 defined
by equation (4.2) and c1 being a dimensionless
positive material parameter. The exponential part
c0 exp½c1ðI4K1Þ2�K1
� �

is similar to the formulation
used for the mechanical response of collagen fibres in
arterial walls as described in detail by Holzapfel et al.
(2000). Note that the strain energy formulation of the
fibrous network given by (4.15) differs from the one
used previously by Dorfmann et al. (2007).
4.4.1. Simple tension. It is convenient to specialize the
above equations for simple extension in the fibre
direction. We take the principal stretches l2Zl3 and
use the notation

l1 Z l; l2 Z lK1=2; ð4:16Þ

where l denotes the stretch in the fibre direction and
the incompressibility condition (3.5) is automatically
satisfied. From equations (3.7)1 and (3.17)1, we have

I1 Z l2 C2lK1; I4 Z l2; ð4:17Þ
and the pseudo-strain energy (4.3) then depends on l

only. This is given by

Ŵ ðl; h0ÞZ h0Ŵ 0ðlÞCfðh0Þ; ð4:18Þ
and defines the notation Ŵ . The superscript on h0 again
indicates dependence on the loading rate. The variable
h, corresponding to (4.9), for a rate-dependent response
has the specific form

h0 Z 1K
1

r 0
tanh

ŴmKŴ 0ðlÞ
m

" #
; ð4:19Þ

with the variable r0 defined in equation (4.14)2. We
write the strain energy (4.15) as a function of l and,
using equation (4.18) with h 0Z1, obtain the expression

Ŵ ðl; 1ÞZ Ŵ 0ðlÞ

Z
m

2
ðl2 C2lK1K3ÞC c 00

2

!fexp½c1ðl2K1Þ2�K1g; ð4:20Þ

which describes the loading path on which the variable
h0 is inactive. The rate-dependent stress-like material
parameter c 00ðlÞ, corresponding to equation (4.2), has
the form

c 00ðlÞZ �c0 1Ka0
1 tanh

l2K1

a2

� �
; ð4:21Þ

with the parameter a0
1 given by (4.14)1. The effective

strain rate _g0 for uniaxial extension has the reduced form

_g0 Z
dðlK1Þ

dt
Z _3; ð4:22Þ
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Figure 3. Experimental and numerical loading–unloading
data of a preconditioned Manduca muscle with lmaxZ1.18
and an engineering strain rate of _3Z1:8 sK1.
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where _3 is the engineering strain rate used in §2.2. The
associated Cauchy stress is then given by

s0 Z l
dŴ 0ðlÞ

dl
ZmðlKlK2Þ

C 2c 00c1lðl2K1ÞC 1

2

dc 00
dl

� �
exp½c1ðl2K1Þ2�

K
1

2

dc 00
dl

; ð4:23Þ

where the subscript ‘0’ again indicates that this
expression describes the loading path in simple
tension and

dc 00
dl

ZK
2�c0a

0
1l

a2

1Ktanh
l2K1

a2

� �2
" #

: ð4:24Þ

Unloading may take place from any point on the loading
path. The start of unloading is taken as the signal for h0 to
be active and to change the form of the energy function as
shown by equation (4.18). The Cauchy stress during
unloading is then given by

sZ l
dŴ

dl
ðl; h0ÞZ h0s0; ð4:25Þ

which shows that stress softening during unloading
requires that h0%1, with equality only at the point
where unloading is initiated.
5. RESULTS

To examine the quality of the model, we perform a
numerical evaluation of the stress–strain relations
given by equations (4.23) and (4.25), respectively, for
the loading and unloading responses. In addition to the
stress–strain relations, we evaluate equations (4.19)
and (4.21) together with (4.14) to account for the rate
dependence of the material and the energy dissipation
during cyclic loading.

To find the adjustable parameters of the governing
equations, we use experimental data from cyclic loading
tests of an unstimulated muscle with constant maxi-
mum stretch of lmaxZ1.18 and imposed constant
values of engineering strain rates _3Z0.0144, 0.072, 0.36
and 1.8 sK1 (see §2.2).

For each value of _3, the muscle is subjected to a total
of five loading and unloading cycles of preconditioning
up to a pre-selected extension of lmaxZ1.18. The
preconditioning is performed to monitor the pro-
gression of stress softening and to determine the
ultimate stress–deformation response for stretches up
to lmax. After the initial four loading–unloading cycles,
the stress–deformation response is essentially repeata-
ble and no additional stress softening occurs. After the
preconditioning cycles are completed, the subsequent
loading–unloading cycle is used to evaluate and
compare the muscle response for _3Z0.0144, 0.072,
0.36 and 1.8 sK1 up to lZlmax (figure 2).

The explicit formulations (4.14) of the parameters
a0

1 and r0 as a function of time, used respectively in
equations (4.19) and (4.21), have not yet been specified.
We found that the experimental data in figure 2 are best
J. R. Soc. Interface (2008)
approximated by the phenomenological relations

a0
1 ZaCad ln

_3

_3max

; r 0 Z rCrd ln
_3

_3min

; ð5:1Þ

where a, ad and r, rd are the adjustable material
parameters, and _3minZ0.0144 sK1 and _3maxZ1.8 sK1

are, respectively, the minimum and maximum values of
the loading rate used during the experimental
characterization of the muscle.

To determine the values of the material parameters,
we start by first considering the experimental data of the
loading path corresponding to the largest strain rate
_3maxZ1.8 sK1. Equation (5.1)1 shows that the value ofad
does not contribute to the numerical response for
_3Z _3max. We fix the values of a and a2 and define some
intervals [0,mmax], ½0; �c0max� and [0,c1max], where the best-
fit parameters of m, �c0 and c1 are assumed to be located.
The best-fit values of these parameters are subsequently
determined iteratively by applying the least-squares
method to increasing values of m, �c0 and c1 within these
intervals. Next, the initial values ofa anda2 are replaced
and the procedure repeated until the numerical results of
the stress–deformation response approximate the
experimental data (figure 3). Then, the loading
responses for _3Z0.0144, 0.072 and 0.36 sK1 are used to
determine the value of ad.

To determine the value of r0 andm, we start with the
unloading response corresponding to _3Z _3min for which
r0Zr (see equation (5.1)2). The least-squares method is
used to determine the best-fit values of r and m. Then,
the value of the remaining parameter rd is found by
matching the unloading responses corresponding to
_3Z0.072, 0.36 and 1.8 sK1. The values of the adjustable
parameters used to fit the experimental data are listed
in table 1.Notably, the best-fit value of the shearmodulus
�c0 of the oriented protein structure is equal to 49.1 kPa.
The shear modulus m of the matrix material, including
intracellular microtubules and other intramuscular
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Figure 4. Numerical results of loading–unloading stress–strain
data corresponding to engineering strain rates of _3Z0.0144,
0.072, 0.36 and 1.8 sK1.

Table 1. Values of adjustable parameters of the stress–
deformation relation for the rate-dependent response of the
Manduca muscle.

parameter value

m (kPa) 37.77
�c0 (kPa) 49.1
c1 2.6
a 0.44
ad K0.03
m (kPa) 11.0
R 0.78
rd 0.07
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connective tissues, is given by 37.7 kPa (Suga et al. 2003;
Prado et al. 2005).

Circles in figure 3 indicate the experimental loading
and unloading data corresponding to an engineering
strain rate of _3Z1.8 sK1. The results of the numerical
calculations for the same strain rate are given by
continuous curves. It can be seen that the fit of the
model to the data is good. Figure 4 shows the numerical
results for engineering strain rates of _3Z0.0144, 0.072,
0.36 and 1.8 sK1. Comparing the data in figure 2 with
the numerical results in figure 4 shows that the fit of the
model to the experimental data of the Manduca muscle
is good for all considered strain rates and that the main
characteristics of the behaviour are reproduced.
6. CONCLUDING REMARKS

Experimental data on the rate-dependent response of
an unstimulated muscle of the tobacco hornworm
caterpillar, Manduca sexta, have been reported for
engineering strain rates of _3Z0.0144, 0.072, 0.36 and
1.8 sK1. For each value of _3, the muscle was subjected to
a total of five loading–unloading cycles of precondition-
ing up to a pre-selected maximum extension of lmaxZ
1.18. The last loading–unloading cycle was used to
evaluate and compare the mechanical behaviour of the
muscle. The data show dependence on the loading rate,
large nonlinear elastic deformations, a hysteretic
response during loading–unloading and stress softening
during the first few cycles of repeated loading.

These strain rates were chosen to represent the range
of muscle stretching speeds experienced during normal
Manduca behaviour. When the caterpillar is exploring
the substrate VIL strain rates are less than 0.1 sK1, but
during the rapid defensive strike reflex the rate can be
as high as 2 sK1 for a brief period (Walters et al. 2001;
and Michael Simon 2007, unpublished observations).
Several features of the passive muscle properties
described here are expected to be important for these
behaviours. At all strain rates, the muscle was found to
stress-soften with repeated cycles of loading and
unloading. This softening recovered spontaneously
when the muscle was left at its resting length for
several minutes. This property could be important in
hydrostatic animals such as Manduca. During inactiv-
ity, the increased passive stiffness of muscle will help to
maintain the internal pressure and provide static
stability. Once the muscle is stretched and released
J. R. Soc. Interface (2008)
(presumably as it initiates movements), the decrease in
passive stiffness will decrease the force required to
re-stretch the muscle after shortening. Another feature
was the increasing stiffness that occurred throughout
periods of rapid loading. This is expected to be
particularly important during high-velocity move-
ments such as the strike reflex. In this behaviour, a
strong mechanical stimulus (such as a pinch) applied to
the posterior abdomen causes the caterpillar to
contract major longitudinal muscles (such as VIL) on
the stimulated side to bring the head quickly around to
the contact site. Muscles on the opposite side are
stretched rapidly, as much as eight times faster
than during crawling. In the tests reported here, the
initial (0–5% strain) stiffness was similar for all strain
rates, but as stretching continued the stiffness increased
much more rapidly for high-velocity and large magni-
tude strains. During a strike behaviour, the initial low
stiffness of muscles on the unstimulated side would help
the muscles on the stimulated side to accelerate lateral
movement of the head. However, the relatively long
distance from the abdominal muscles to the head
produces a large moment and a potentially damaging
fast stretch of the muscles and body wall tissues. The
increased stiffness at high strain rates will passively
resist such stretching. Together, these two properties
illustrate how nonlinear passive properties of tissues
such as muscles can automatically produce adaptive
and behaviourally relevant responses without direct
commands from the central nervous system.

One important aspect of muscle functions is that
different molecular mechanisms are responsible for the
time-dependent processes. In this paper we evaluate the
response of the muscle for different, constant loading
rates and associate the different macroscopic stress–
deformation responses with changes in the molecular
architecture. In particular, we consider unfolding of
coileddomains during initial loading andpartial refolding
when the muscle returns to the reference configuration
upon unloading. A systematic evaluation on the effect of
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List of symbols used.

symbol description

B set of material points (or particles)
B region in a three-dimensional Euclidean point space
Br reference configuration of B
B current configuration of B
X position vector of particles in reference configuration
x position vector of particles in current configuration
c vector field that specifies the place x of X
F deformation gradient
Grad gradient operator with respect to X
J determinant of the deformation tensor F
dV volume element in the reference configuration Br

dv volume element in the current configuration B
R rotation tensor
U right stretch tensor
V left stretch tensor
l1, l2, l3 principal stretches, eigenvalues of U (equivalently V)
u(1), u(2), u(3) principal directions in the reference configuration (eigenvectors of U)
v(1), v(2), v(3) principal directions in the current configuration (eigenvectors of V)
C right Cauchy–Green tensor
B left Cauchy–Green tensor
I1, I2, I3 principal invariants of C (equivalently B)
dX infinitesimal line element in the reference configuration
dx infinitesimal line element in the current configuration
W strain energy function
S nominal stress tensor
s Cauchy stress tensor
Q rotation tensor
p Lagrange multiplier
M preferred direction in the reference configuration
I4, I5 invariants associated with M
Wiso strain energy function associated with isotropic matrix material
Wfib strain energy function to account for directional reinforcement
h variable to modify the formulation W to account for stress softening
W(F, h) pseudo-energy function
W0(F) strain energy function for inactive h

S0 nominal stress tensor for inactive h
s0 Cauchy stress tensor for inactive h

p0 Lagrange multiplier for inactive h
he function to describe h in terms of the deformation F
w(F) strain energy function
f softening function
m shear modulus of the matrix material in the reference configuration
�c0 constant shear modulus of the oriented proteins
c0 deformation-dependent shear modulus of the oriented proteins
a1, a2, c1 dimensionless material model parameters
r, m/m dimensionless material model parameters
_g0 effective strain rate
�l1; �l2; �l3 modified principal stretches
0 superscript to indicate dependence on loading rate
l stretch in the fibre direction

Ŵ 0ðlÞ energy function for simple tension and inactive h

Ŵ ðl; h0Þ pseudo-energy function for simple tension

_3 engineering strain rate
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recovery time during which a preconditioned muscle
returns to an unconditioned state is currently being
performed and is therefore not part of this paper.
The associated experimental data showing the time-
independent equilibrium configuration of a passive
muscle and the time-dependent viscoelastic recovery at
constant elongation from the preconditioned to the
unconditioned state will be given elsewhere.
J. R. Soc. Interface (2008)
The experimental data reported in this paper have
then been used to formulate a constitutive model for the
mechanical response of the Manduca muscle at finite
strains. Stress–strain relations for loading and unloading
were developedusing the general theory of a hyperelastic,
transversely isotropic material. The theory has been
modified to account for the hysteretic response of
a preconditioned muscle during loading–unloading.

http://rsif.royalsocietypublishing.org/
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Phenomenological relations were developed and included
in the model to account for the molecular mechanisms
responsible for the rate-dependent material response.
Good agreement is demonstrated between the experi-
mental data and the results of the numerical simulation.

This research was supported by the National Science
Foundation grants IBN 0342330 and IBN 0117135 to B.A.T.
andaW.M.KeckFoundationScienceandEngineeringProgram
grant Biomimetic Technologies for Soft-bodied Robots.
REFERENCES

Bagni, M. A., Colombini, B., Geiger, P., Berlinguer Palmini,
R. & Cecchi, G. 2004 Non-cross-bridge calcium-dependent
stiffness in frog muscle fibers. Am. J. Physiol.-Cell Ph. 286,
1353–1357. (doi:10.1152/ajpcell.00493.2003)

Belanger, J. H. & Trimmer, B. A. 2000 Combined kinematic
and electromyographic analyses of proleg function during
crawling by the caterpillar Manduca sexta. J. Comp.
Physiol. A 186, 1031–1039. (doi:10.1007/s003590000160)

Bertoldi, K. & Boyce, M. C. In press. Mechanics of the
hysteretic large strain behavior of mussel byssus threads.
J. Mater. Sci.

Biewener, A. A. 2003 Animal locomotion. New York, NY:
Oxford University Press.

Bullard, B., Garcia, T., Benes, V., Leake, M. C., Linke, W. A.
& Oberhauser, A. F. 2006 The molecular elasticity of the
insect flight muscle proteins projectin and kettin. Proc.
Natl Aacd. Sci. USA 103, 4451–4456. (doi:10.1073/pnas.
0509016103)

Campbell, K. S. & Lakie, M. 1998 A cross-bridge mechanism
can explain the thixotropic short-range elastic component
of relaxed frog skeletal muscle. J. Physiol. 510, 941–962.
(doi:10.1111/j.1469-7793.1998.941bj.x)

Carrion-Vazquez, M., Oberhauser, A. F., Fowler, S. B.,
Marszalek, P. E., Broedel, S. E., Clarke, J. & Fernandez,
J. M. 1999 Mechanical and chemical unfolding of a single
protein: a comparison. Proc. Natl Acad. Sci. USA 96,
3694–3699. (doi:10.1073/pnas.96.7.3694)

Cowin, S. C. 2004 Tissue growth and remodeling. Annu. Rev.
Biomed. Eng. 6, 77–107. (doi:10.1146/annurev.bioeng.6.
040803.140250)

Dorfmann, A. & Ogden, R. W. 2003 A pseudo-elastic model
for loading, partial unloading and reloading of particle-
reinforced rubber. Int. J. Solids Struct. 40, 2699–2714.
(doi:10.1016/S0020-7683(03)00089-1)

Dorfmann, A. & Ogden, R. W. 2004 A constitutive model for
the Mullins effect with permanent set in particle-reinforced
rubber. Int. J. Solids Struct. 41, 1855–1878. (doi:10.1016/
j.ijsolstr.2003.11.014)

Dorfmann, A., Trimmer, B. A. & Woods Jr, W. A. 2007 A
constitutive model for muscle properties in a soft bodied
arthropod. J. R. Soc. Interface 4, 257–269. (doi:10.1098/
rsif.2006.0163)

Flory, P. J. 1988 Statistical mechanics of chain molecules.
Munich, Germany: Hanser Publishers.

Fung, Y. C. 1980 On pseudo-elasticity of living tissues. In
Mechanics today, vol. 5 (ed. S. N. Nasser), pp. 49–66.
New York, NY: Pergamon Press.

Fung, Y. C. 1993 Biomechanics: mechanical properties of
living tissues. New York, NY: Springer.

Gosline, J., Lillie, M., Carrington, E., Guerette, P., Ortlepp,
C. & Savage, K. 2002 Elastic proteins: biological roles and
mechanical properties. Phil. Trans. R. Soc. B 357,
121–132. (doi:10.1098/rstb.2001.1022)
J. R. Soc. Interface (2008)
Granzier, H. L. & Labeit, S. 2004 The giant protein titin: a
major player in myocardial mechanics, signaling, and
disease. Circ. Res. 94, 284–295. (doi:10.1161/01.RES.
0000117769.88862.F8)

Granzier, H. L. & Wang, K. 1993a Interplay between passive
tension and strong and weak binding cross-bridges in
insect indirect flight muscle. A functional dissection by
gelsolin-mediated thin filament removal. J. Gen. Physiol.
101, 235–270. (doi:10.1085/jgp.101.2.235)

Granzier, H. L. & Wang, K. 1993b Passive tension and
stiffness of vertebrate skeletal and insect flight muscles: the
contribution of weak cross-bridges and elastic filaments.
Biophys. J. 65, 2141–2159.

Hill, D. K. 1968 Tension due to interaction between the
sliding filaments in resting striated muscle. The effect of
stimulation. J. Physiol. 199, 637–684.

Holmes, K. C. & Geeves, M. A. 2000 The structural basis of
muscle contraction. Phil. Trans. R. Soc. B 355, 419–431.
(doi:10.1098/rstb.2000.0583)

Holzapfel, G. A., Gasser, T. C. & Ogden, R. W. 2000 A new
constitutive framework for arterial wall mechanics and a
comparative study of material models. J. Elasticity 61,
1–48. (doi:10.1023/A:1010835316564)

Holzapfel, G. A. 2001Nonlinear solid mechanics: a continuum
approach for engineering, 2nd edn. Chichester, UK:Wiley.

Huxley, A. F. 2000 Mechanics and models of the myosin
motor. Phil. Trans. R. Soc. B 355, 433–440. (doi:10.1098/
rstb.2000.0584)

Kier, W. M. & Smith, K. K. 1985 Tongues, tentacles and
trunks—the biomechanics of movement in muscular-
hydrostats. Zool. J. Linn. Soc. 83, 307–324.

Kratky, O. & Porod, G. 1949 Röntgenuntersushung gelöster
Fadenmolekühle. Recueil des Travaux Chimiques des Pays
Bas-J. R. Neth. Chem. Soc. 68, 1106–1123.

Kulke, M., Neagoe, C., Kolmerer, B., Minajeva, A., Hinssen,
H., Bullard, B. & Linke, W. A. 2001 Kettin, a major source
of myofibrillar stiffness in Drosophila indirect flight
muscle. J. Cell Biol. 154, 1045–1057. (doi:10.1083/jcb.
200104016)

Lieber, R. L., Leonard, M. E. & Brown-Maupin, C. G. 2000
Effects of muscle contraction on the load-strain properties
of frog aponeurosis and tendon. Cells Tissues Organs 166,
48–54. (doi:10.1159/000016708)

Marsh, R. L. 1999 Howmuscles deal with real-world loads: the
influence of length trajectory on muscle performance.
J. Exp. Biol. 202, 3377–3385.

Merodio, J. & Ogden, R. W. 2003 Instabilities and loss of
ellipticity in fiber-reinforced compressible non-linearly
elastic solids under plane deformation. Int. J. Solids Struct.
40, 4707–4727. (doi:10.1016/S0020-7683(03)00309-3)

Mezoff, S., Papastathis, N., Takesian, A. & Trimmer, B. A.
2004 The biomechanical and neural control of hydrostatic
limb movements in Manduca sexta. J. Exp. Biol. 207,
3043–3053. (doi:10.1242/jeb.01136)

Mutungi, G. & Ranatunga, K. W. 2000 Do cross-bridges
contribute to the tension during stretch of passive muscle?
A response. J. Muscle Res. Cell M. 21, 301–302. (doi:10.
1023/A:1005633931146)

Ogden, R. W. 1997 Non-linear elastic deformations. New
York, NY: Dover.

Ogden, R. W. & Roxburgh, D. G. 1999 A pseudo-elastic
model for the Mullins effect in filled rubber. Proc. R. Soc.
A 455, 2861–2877. (doi:10.1098/rspa.1999.0431)

Ogden, R. W. 2001 Elements of the theory of finite elasticity.
In Nonlinear elasticity: theory and applications (eds Y. B.
Fu & R.W. Ogden), pp. 1–57. Cambridge, UK: Cambridge
University Press.

Prado, L. G., Makarenko, I., Andresen, C., Kruger, M., Opitz,
C. A. & Linke, W. A. 2005 Isoform diversity of giant

http://dx.doi.org/doi:10.1152/ajpcell.00493.2003
http://dx.doi.org/doi:10.1007/s003590000160
http://dx.doi.org/doi:10.1073/pnas.0509016103
http://dx.doi.org/doi:10.1073/pnas.0509016103
http://dx.doi.org/doi:10.1111/j.1469-7793.1998.941bj.x
http://dx.doi.org/doi:10.1073/pnas.96.7.3694
http://dx.doi.org/doi:10.1146/annurev.bioeng.6.040803.140250
http://dx.doi.org/doi:10.1146/annurev.bioeng.6.040803.140250
http://dx.doi.org/doi:10.1016/S0020-7683(03)00089-1
http://dx.doi.org/doi:10.1016/j.ijsolstr.2003.11.014
http://dx.doi.org/doi:10.1016/j.ijsolstr.2003.11.014
http://dx.doi.org/doi:10.1098/rsif.2006.0163
http://dx.doi.org/doi:10.1098/rsif.2006.0163
http://dx.doi.org/doi:10.1098/rstb.2001.1022
http://dx.doi.org/doi:10.1161/01.RES.0000117769.88862.F8
http://dx.doi.org/doi:10.1161/01.RES.0000117769.88862.F8
http://dx.doi.org/doi:10.1085/jgp.101.2.235
http://dx.doi.org/doi:10.1098/rstb.2000.0583
http://dx.doi.org/doi:10.1023/A:1010835316564
http://dx.doi.org/doi:10.1098/rstb.2000.0584
http://dx.doi.org/doi:10.1098/rstb.2000.0584
http://dx.doi.org/doi:10.1083/jcb.200104016
http://dx.doi.org/doi:10.1083/jcb.200104016
http://dx.doi.org/doi:10.1159/000016708
http://dx.doi.org/doi:10.1016/S0020-7683(03)00309-3
http://dx.doi.org/doi:10.1242/jeb.01136
http://dx.doi.org/doi:10.1023/A:1005633931146
http://dx.doi.org/doi:10.1023/A:1005633931146
http://dx.doi.org/doi:10.1098/rspa.1999.0431
http://rsif.royalsocietypublishing.org/


362 Muscle strain-rate dependency A. L. Dorfmann et al.

 rsif.royalsocietypublishing.orgDownloaded from 
proteins in relation to passive and active contractile
properties of rabbit skeletal muscles. J. Gen. Physiol.
126, 461–480. (doi:10.1085/jgp.200509364)

Proske, U. & Morgan, D. L. 1999 Do cross-bridges contribute
to the tension during stretch of passive muscle? J. Muscle
Res. Cell M. 20, 433–442. (doi:10.1023/A:1005573625675)

Qi, H. J., Ortiz, C. & Boyce, M. C. 2006 Mechanics of
biomacromolecular networks containing folded domains.
J. Eng. Mater-T. ASME 128, 509–518.

Qiu, G. Y. & Pence, T. J. 1997 Remarks on the behavior of
simple directionally reinforced incompressible nonlinearly
elastic solids. J. Elasticity 49, 1–30. (doi:10.1023/A:1007
410321319)

Rheuben, M. B. & Kammer, A. E. 1980 Comparison of slow
larval and fast adult muscle innervated by the same motor
neurone. J. Exp. Biol. 84, 103–118.

Rief,M., Gautel,M., Oesterhelt, F., Fernandez, J.M.&Gaub,
H. E. 1997 Reversible unfolding of individual titin
immunoglobulin domains by AFM. Science 276,
1109–1112. (doi:10.1126/science.276.5315.1109)

Selvadurai, A. P. S. & Yu, Q. 2006 Constitutive modelling
of a polymeric material subjected to chemical exposure.
Int. J. Plasticity 22, 1089–1122. (doi:10.1016/j.ijplas.2005.
07.005)

Speich, J. E., Quintero, K., Dosier, C., Borgsmiller, L., Koo,
H. P. & Ratz, P. H. 2006 A mechanical model for
adjustable passive stiffness in rabbit detrusor. J. Appl.
Physiol. 101, 1189–1198. (doi:10.1152/japplphysiol.00396.
2006)

Spencer, A. J. M. 1972 Deformations of fibre-reinforced
materials. Oxford, UK: Oxford University Press.

Spencer, A. J. M. 1984 Constitutive theory for strongly
anisotropic solids. In Continuum theory of the mechanics of
fibre-reinforced composites, vol. 282 (ed. A. J. M. Spencer).
CISM courses and lectures, pp. 1–32. Wien, Austria:
Springer.

Suga, M., Matsuda, T., Minato, K., Oshiro, O., Chihara, K.,
Okamoto, J., Takizawa, O., Komori, M. & Takahashi, T.
2003 Measurement of in vivo local shear modulus using
J. R. Soc. Interface (2008)
MR elastography multiple-phase patchwork offsets. IEEE
Trans. Bio.-Med. Eng. 50, 908–915. (doi:10.1109/TBME.
2003.813540)

Suzuki, M. G., Shimada, T. & Kobayashi, M. 1999 Bm kettin,
homologue of the Drosophila kettin gene, is located on the
Z chromosome in Bombyx mori and is not dosage
compensated. Heredity 82, 170–179. (doi:10.1038/sj.hdy.
6884570)

Sweeney, J. &Ward, I. M. 1995 Rate-dependent and network
phenomena in the multiaxial drawing of poly(vinyl
chloride). Polymer 36, 299–308. (doi:10.1016/0032-3861
(95)91317-Z)

Trimmer, B. A. & Issberner, J. I. 2007 Kinematics of soft-
bodied, legged locomotion in Manduca sexta larvae. Biol.
Bull. 212, 130–142.

Trimmer, B. A. & Weeks, J. C. 1989 Effects of nicotinic and
muscarinic agents on an identified motoneurone and its
direct afferent inputs in larvalManduca sexta. J. Exp. Biol.
144, 303–337.

Tskhovrebova, L. & Trinick, J. 2002 Role of titin in
vertebrate striated muscle. Phil. Trans. R. Soc. B 357,
199–206. (doi:10.1098/rstb.2001.1028)

Tskhovrebova, L. & Trinick, J. 2003 Titin: properties and
family relationships. Nat. Rev. Mol. Cell Biol. 4, 679–689.
(doi:10.1038/nrm1198)

Tskhovrebova, L., Trinick, J., Sleep, J. A. & Simmons, R. M.
1997 Elasticity and unfolding of single molecules of the
giant muscle protein titin. Nature 387, 308–312. (doi:10.
1038/387308a0)

Walters, E., Illich, P., Weeks, J. & Lewin, M. 2001 Defensive
responses of larval Manduca sexta and their sensitization
by noxious stimuli in the laboratory and field. J. Exp. Biol.
204, 457–469.

Woods Jr, W. A., Fusillo, S. & Trimmer, B. A. In press.
Dynamic properties of a locomotory muscle of the tobacco
hornworm Manduca sexta during strain cycling and
simulated natural crawling. J. Exp. Biol.

Ziegler, C. 1994 Titin-related proteins in invertebrate
muscles. Comp. Biochem. Phys. A 109, 823–833. (doi:10.
1016/0300-9629(94)90230-5)

http://dx.doi.org/doi:10.1085/jgp.200509364
http://dx.doi.org/doi:10.1023/A:1005573625675
http://dx.doi.org/doi:10.1023/A:1007410321319
http://dx.doi.org/doi:10.1023/A:1007410321319
http://dx.doi.org/doi:10.1126/science.276.5315.1109
http://dx.doi.org/doi:10.1016/j.ijplas.2005.07.005
http://dx.doi.org/doi:10.1016/j.ijplas.2005.07.005
http://dx.doi.org/doi:10.1152/japplphysiol.00396.2006
http://dx.doi.org/doi:10.1152/japplphysiol.00396.2006
http://dx.doi.org/doi:10.1109/TBME.2003.813540
http://dx.doi.org/doi:10.1109/TBME.2003.813540
http://dx.doi.org/doi:10.1038/sj.hdy.6884570
http://dx.doi.org/doi:10.1038/sj.hdy.6884570
http://dx.doi.org/doi:10.1016/0032-3861(95)91317-Z
http://dx.doi.org/doi:10.1016/0032-3861(95)91317-Z
http://dx.doi.org/doi:10.1098/rstb.2001.1028
http://dx.doi.org/doi:10.1038/nrm1198
http://dx.doi.org/doi:10.1038/387308a0
http://dx.doi.org/doi:10.1038/387308a0
http://dx.doi.org/doi:10.1016/0300-9629(94)90230-5
http://dx.doi.org/doi:10.1016/0300-9629(94)90230-5
http://rsif.royalsocietypublishing.org/

	Muscle performance in a soft-bodied terrestrial crawler: constitutive modelling of strain-rate dependency
	Introduction
	Mechanical behaviour of Manduca muscle
	Experimental methods
	Rate-dependent stress-deformation response

	Constitutive modelling
	Basic equations
	Isotropic hyperelasticity
	Incompressibility
	Transversely isotropic materials
	Constitutive equations
	Pseudo-elasticity

	A model for the Manduca muscle
	Fibrous network behaviour
	Hysteretic response
	Rate-dependent response
	A specific model
	Simple tension

	Results
	Concluding remarks
	This research was supported by the National Science Foundation grants IBN 0342330 and IBN 0117135 to B.A.T. and a W.M. Keck Foundation Science and Engineering Program grant Biomimetic Technologies for Soft-bodied Robots.
	References


